Keefektifan Penambahan Kapasitas Saluran dan Dinding Penahan Tanah pada Sungai Brantas Hulu di Kediri dalam Mitigasi Banjir

Rian Mantasa Salve Prastica, Dhany Saputra Pratama, Muhammad Rizki Primasetya

Abstract


Mitigasi banjir merupakan hal penting dilakukan pada wilayah terdampak bencana, misalnya saluran, sungai, drainase, dan lain-lain. Namun, perlu dilakukan penilaian terlebih dahulu agar mitigasi yang dilakukan bersifat efektif. Penelitian ini berfokus di Sungai Brantas bagian hulu di Kediri. Evaluasi pentingnya pelebaran saluran dan pembangunan dinding penahan tanah di kawasan tersebut perlu dilakukan karena dinilai tidak efektif. Penelitian ini menggunakan metode penelitian yang terdiri dari analisis banjir, analisis stabilitas lereng, dan evaluasi skenario baru yang diwacanakan pada saluran yang ditinjau. Berdasarkan hasil analisis hidrologi, pemodelan hidrolika menggunakan HEC-RAS, analisis stabilitas lereng menggunakan SLOPE/W, dan simulasi skenario baru menyimpulkan bahwa intervensi penambahan dimensi kapasitas saluran dan penambahan perkuatan lereng tidak efektif pada Sungai Brantas bagian hulu yang memiliki frekuensi kejadian banjir yang sedikit.


Full Text:

PDF

References


Direktorat Perencanaan dan Evaluasi PDAS (2015) Kawasan DAS Brantas. Jakarta.

Drake, J., Bradford, A. and Joy, D. (2010) ‘Application of HEC-RAS 4.0 temperature model to estimate groundwater contributions to Swan Creek, Ontario, Canada’, Journal of Hydrology. Elsevier B.V., 389(3–4), pp. 390–398. doi: 10.1016/j.jhydrol.2010.06.022.

Erlina (2018) ‘Analisis Banjir Dan Sedimentasi Wilayah Sungai Brantas (Tinjaun Terhadap Metode Pengendalian)’, Jurnal Teknik Sipil, XIII(1), pp. 1–14. Available at: https://jurnal.ucy.ac.id/index.php/teknik_sipil/article/view/245.

GEO-SLOPE International Ltd. (2012) Stability Modeling with SLOPE / W. July 2012. Calgary, Alberta, Canada: GEO-SLOPE International Ltd. Available at: www.geo-slope.com.

Kang, M. S. et al. (2009) ‘Design of drainage culverts considering critical storm duration’, Biosystems Engineering. IAgrE, 104(3), pp. 425–434. doi: 10.1016/j.biosystemseng.2009.07.004.

Kementerian Pekerjaan Umum (2010) Pengelolaan Sumber Daya Air Wilayah Sungai Brantas.

Ben Khalfallah, C. and Saidi, S. (2018) ‘Spatiotemporal floodplain mapping and prediction using HEC-RAS - GIS tools: Case of the Mejerda river, Tunisia’, Journal of African Earth Sciences. Elsevier Ltd, 142, pp. 44–51. doi: 10.1016/j.jafrearsci.2018.03.004.

Kourtis, I. M., Tsihrintzis, V. A. and Baltas, E. (2018) ‘Simulation of Low Impact Development (LID) Practices and Comparison with Conventional Drainage Solutions’, Proceedings, 2(11), p. 640. doi: 10.3390/proceedings2110640.

Kumar, N. et al. (2019) ‘Applicability of HEC ‑ RAS 2D and GFMS for flood extent mapping : a case study of Sangam area , Prayagraj , India’, Modeling Earth Systems and Environment. Springer International Publishing, (0123456789). doi: 10.1007/s40808-019-00687-8.

Kuncoro, M. A., Winarto, S. and Purnomo, Y. C. S. (2018) ‘Studi Penanggulangan Banjir di Kali Batan Kabupaten Kediri’, Jurnal Manajemen Teknologi & Teknik Sipil, 1(1). doi: 10.30737/jurmateks.v1i1.143.

Liu, C. and Li, Y. (2016) ‘Measuring eco-roof mitigation on flash floods via GIS simulation’, Built Environment Project and Asset Management, 6(4), pp. 415–427. doi: 10.1108/BEPAM-07-2015-0031.

Machado, R. A. S., Oliveira, A. G. and Lois-González, R. C. (2019) ‘Urban ecological infrastructure: The importance of vegetation cover in the control of floods and landslides in Salvador / Bahia, Brazil’, Land Use Policy. Elsevier, 89(October), p. 104180. doi: 10.1016/j.landusepol.2019.104180.

Nieto, J. M. et al. (2013) ‘Acid mine drainage in the Iberian Pyrite Belt: 1. Hydrochemical characteristics and pollutant load of the Tinto and Odiel rivers’, Environmental Science and Pollution Research, 20(11), pp. 7509–7519. doi: 10.1007/s11356-013-1634-9.

Paprotny, D. et al. (2018) ‘Trends in flood losses in Europe over the past 150 years’, Nature Communications. Springer US, 9(1). doi: 10.1038/s41467-018-04253-1.

Parhi, P. K. (2018) ‘Flood Management in Mahanadi Basin using HEC-RAS and Gumbel’s Extreme Value Distribution’, Journal of The Institution of Engineers (India): Series A. Springer India, 99(4), pp. 751–755. doi: 10.1007/s40030-018-0317-4.

Prastica, R. M. S. et al. (2017) ‘Analisis Banjir dan Perencanaan Desain Transportasi Sungai di Kota Bojonegoro’, Media Komunikasi Teknik Sipil, 23(2), p. 91. doi: 10.14710/mkts.v23i2.15981.

Prastica, R. M. S. et al. (2018) ‘Estimating design flood and HEC-RAS modelling approach for flood analysis in Bojonegoro city’, in IOP Conference Series: Materials Science and Engineering. doi: 10.1088/1757-899X/316/1/012042.

Prastica, R. M. S., Apriatresnayanto, R. and Marthanty, D. R. (2019) ‘Structural and green infrastructure mitigation alternatives prevent Ciliwung River from water-related landslide’, International Journal on Advanced Science, Engineering and Information Technology, 9(6), pp. 1825–1832.

Prastica, R. M.S. and Wicaksono, D. (2019) ‘Integrated multimodal disaster mitigation management for urban areas: A preliminary study for 2-d flood modeling’, IOP Conference Series: Materials Science and Engineering, 650(1). doi: 10.1088/1757-899X/650/1/012056.

Prastica, R.M.S. and Wicaksono, D. (2019) ‘Integrated multimodal disaster mitigation management for urban areas: A preliminary study for 2-d flood modeling’, in IOP Conference Series: Materials Science and Engineering. doi: 10.1088/1757-899X/650/1/012056.

Rangari, V. A. et al. (2019) ‘Floodplain Mapping and Management of Urban Catchment Using HEC-RAS: A Case Study of Hyderabad City’, Journal of The Institution of Engineers (India): Series A. Springer India, 100(1), pp. 49–63. doi: 10.1007/s40030-018-0345-0.

Rangari, V. A., Umamahesh, N. V. and Bhatt, C. M. (2019) ‘Assessment of inundation risk in urban floods using HEC RAS 2D’, Modeling Earth Systems and Environment. Springer International Publishing, 5(4), pp. 1839–1851. doi: 10.1007/s40808-019-00641-8.

Rao, P. and Hromadka, T. V. (2016) ‘Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models’, SpringerPlus. Springer International Publishing, 5(1). doi: 10.1186/s40064-016-2199-0.

Setyoasri, Y. P. and Prastica, R. M. S. (2020) ‘Rapid assessment of river watershed health and vulnerability level for restoration strategy: a study of river systems in Indramayu, West Java, Indonesia’, IOP Conference Series: Earth and Environmental Science, 423, p. 012016. doi: 10.1088/1755-1315/423/1/012016.

Shole, D. G. and Belayneh, M. Z. (2019) ‘The effect of side slope and clay core shape on the stability of embankment dam: Southern Ethiopia’, International Journal of Environmental Science and Technology. Springer Berlin Heidelberg, 16(10), pp. 5871–5880. doi: 10.1007/s13762-019-022283.

Smith, A. et al. (2019) ‘New estimates of flood exposure in developing countries using high-resolution population data’, Nature Communications. Springer US, 10(1), pp. 1–7. doi: 10.1038/s41467-019-09282-y.

Tedford, M. and Ellison, J. C. (2018) ‘Analysis of river rehabilitation success, Pipers River, Tasmania’, Ecological Indicators. Elsevier, 91(September 2017), pp. 350–358. doi: 10.1016/j.ecolind.2018.03.090.

Wedawatta, G. et al. (2016) ‘Disaster risk reduction infrastructure requirements for South-Western Bangladesh: Perspectives of local communities’, Built Environment Project and Asset Management, 6(4), pp. 379–390. doi: 10.1108/BEPAM-06-2015-0022.

Wu, Z. et al. (2020) ‘Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse’, Science of the Total Environment. Elsevier B.V., 716, p. 137077. doi: 10.1016/j.scitotenv.2020.137077.

Yazdi, J. (2018) ‘Rehabilitation of Urban Drainage Systems Using a Resilience-Based Approach’. Water Resources Management, pp. 721–734.

Yu, S. et al. (2020) ‘Sensibility analysis of the hydraulic conductivity anisotropy on seepage and stability of sandy and clayey slope’, Water (Switzerland), 12(1). doi: 10.3390/w12010277.

Zellou, B. and Rahali, H. (2017) ‘Assessment of reduced-complexity landscape evolution model suitability to adequately simulate flood events in complex flow conditions’, Natural Hazards. Springer Netherlands, 86(1), pp. 1–29. doi: 10.1007/s11069-016-2671-8.




DOI: http://dx.doi.org/10.29103/tj.v10i2.287

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Rian Mantasa Salve Prastica, Dhany Saputra Pratama, Muhammad Rizki Primasetya

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN: 2088-0651 

E-ISSN: 2502-1680

 Google Scholar

 
Accredited based on Sinta 3 based on the Decree of the Director General of Strengthening Research and Development of the Ministry of Research, Technology and Higher Education of the Republic of Indonesia Number 230/E/KPT/2022
Valid for 5 years, Volume 12 Number 2 Year 2022 to Volume 17 Number 1 Year 2027

 

Creative Commons "Attribution-ShareAlike”

Attibusion Internasional (CC BY-SA 4.0)




Published 2 times a year
March and September

Published by:
The Research institutions and community service (LPPM) Universitas Malikussaleh

In cooperation with Ikatan Sarjana Teknik Sipil (ISATSI NAD) Lhokseumawe


Web Analytics

View My Stats