Efek Pengempaan Pada Proses Pembuatan Bata Ringan Geopolimer

Mufti Amir Sultan, Julham Adingku, Kusnadi Kusnadi

Abstract


Abstrak

 

Pasir batu apung sebagai bahan baku pembuatan bata ringan dengan menggunakan geopolimer sebagai pengikat menggantikan semen. Geopolimer terbentuk dari bahan baku yang banyak mengandung unsur silika  dan alumina. Penelitian ini menggunakan perbandingan volume agregat pengisi berupa pasir batu apung sebesar 50% dan binder 50%. Binder terdiri atas 55% fly ash dan 45% aktivator, di mana aktivator merupakan campuran dari Na2SiO3 dan larutan NaOH 10M dengan perbandingan 1:1. Proses produksi bata dengan pengempaan bervariasi 3,3 MPa, 6,7 MPa, 10,0 MPa, dan 13,3 MPa. Benda uji kontrol tidak dilakukan pengempaan. Untuk mempercepat proses polimerisasi bedan uji dipanaskan dengan menggunakan oven pada suhu 800C selama 8 jam. Hasil penelitian menunjukkan bahwa semakin tinggi pengempaan yang diberikan pada proses produksi bata cenderung meningkatkan kuat tekan dan berbanding terbalik dengan penyerapan air. Pada pengempaan 10,0 MPa dan 13,30 MPa masing-masing menghasilkan mutu bata III dan IV.

 

Kata kunci:  pasir batu apung, bata ringan, geopolimer, mutu bata

 

 

 

 

Abstract

 

Pumice sand as a raw material for making lightweight bricks using geopolymer as a binder to replace cement. Geopolymers are formed from raw materials that contain lots of silica and alumina elements. This research uses a volume ratio of aggregate filler in the form of pumice sand at 50% and binder at 50%. The binder consists of 55% fly ash and 45% activator, where the activator is a mixture of Na2SiO3 and 10M NaOH solution in a ratio of 1:1. The brick production process with compression varies from 3.3 MPa, 6.7 MPa, 10.0 MPa, and 13.3 MPa. The control test specimen was not pressed. To speed up the polymerization process, the test bed was heated using an oven at 800C for 8 hours. The research results show that the higher the compression given in the brick production process tends to increase the compressive strength and this is inversely proportional to water absorption. At 10.0 MPa and 13.30 MPa compression, they produce brick grades III and IV respectively.

 

Keywords: pumice sand, light brick, geopolymer, brick quality


Keywords


pumice sand, light brick, geopolymer, brick quality

Full Text:

PDF

References


Alhawat, M. et al. (2022) ‘Properties of Geopolymers Sourced from Construction and Demolition Waste: A Review’, Journal of Building Engineering, 50, pp. 1–26. Available at: https://doi.org/10.1016/j.jobe.2022.104104.

Amran, M., Debbarma, S. and Ozbakkaloglu, T. (2021) ‘Fly Ash-Based Eco-Friendly Geopolymer Concrete: A Critical Review of The Long-Term Durability Properties’, Construction and Building Materials, 270. Available at: https://doi.org/10.1016/j.conbuildmat.2020.121857.

Billong, N., Oti, J. and Kinuthia, J. (2021) ‘Using Silica Fume Based Activator in Sustainable Geopolymer Binder for Building Application’, Construction and Building Materials, 275, pp. 1–8. Available at: https://doi.org/10.1016/j.conbuildmat.2020.122177.

Costello, A.J.R. et al. (1974) ‘Structure and Properties of the Condensed Phosphates. XVIII Ring-Chain and Other Equilibria in Organic Solvents’, Inorganic Chemistry, 13(5), pp. 1226–1230.

Davidovits, J. (1994) ‘Properties of Geopolymer Cements’, in Alkaline Cements and Concretes, KIEV Ukraine, pp. 1–20. Available at: https://www.researchgate.net/publication/284651826.

Van Deventer, J.S.J. et al. (2010) ‘Chemical Research and Climate Change as Drivers in the Commercial Adoption of Alkali Activated Materials’, Waste and Biomass Valorization, 1(1), pp. 145–155. Available at: https://doi.org/10.1007/s12649-010-9015-9.

Gartner, E. (2004) ‘Industrially Interesting Approaches to “Low-CO2” Cements’, Cement and Concrete Research, 34(9), pp. 1489–1498. Available at: https://doi.org/10.1016/j.cemconres.2004.01.021.

Gawatre, D.W. and Vairagade, L.N. (2014) ‘Strength Characteristics of Different Types of Bricks’, International Journal of Science and Research (IJSR) ISSN, 3(10), pp. 2247–2252. Available at: www.ijsr.net.

Ishak, M., Sultan, M.A. and Yudasaputra, M.T. (2020) ‘Kuat Tekan dan Kuat Lekat Pasangan Bata Semen Pasir Apung’, Clapeyron: Jurnal Ilmiah Teknik Sipil, 1(2), pp. 66–73.

Kabir, D., Imran, I. and Sultan, M.A. (2018) ‘Penggunaan Fly Ash Sebagai Bahan Tambah pada Proses Pembuatan Mortar Dengan Bahan Dasar Pasir Apung’, Techno, 7(2), pp. 157–164.

Khan, M. et al. (2021) ‘Efficiency of Basalt Fiber Length and Content on Mechanical and Microstructural Properties of Hybrid Fiber Concrete’, Fatigue and Fracture of Engineering Materials and Structures, 44(8), pp. 2135–2152. Available at: https://doi.org/10.1111/ffe.13483.

Khan, M. and Ali, M. (2019) ‘Improvement in Concrete Behavior with Fly Ash, Silica-Fume and Coconut Fibres’, Construction and Building Materials, 203, pp. 174–187. Available at: https://doi.org/10.1016/j.conbuildmat.2019.01.103.

Khan, M., Lao, J. and Dai, J.-G. (2022) ‘Comparative Study of Advanced Computational Techniques for Estimating the Compressive Strength of UHPC’, Journal of Asian Concrete Federation, 8(1), pp. 51–68. Available at: https://doi.org/10.18702/acf.2022.6.8.1.51.

Kumar, V.V.P. and Prasad, D.R. (2019) ‘Influence of Supplementary Cementitious Materials on Strength and Durability Characteristics of Concrete’, Advances in Concrete Construction, 7(2), pp. 75–85. Available at: https://doi.org/10.12989/acc.2019.7.2.075.

Li, G. et al. (2022) ‘Fly Ash Application as Supplementary Cementitious Material: A Review’, Materials, 15(7), pp. 1–23. Available at: https://doi.org/10.3390/ma15072664.

McLellan, B.C. et al. (2011) ‘Costs and Carbon Emissions for Geopolymer Pastes in Comparison to Ordinary Portland Cement’, Journal of Cleaner Production, 19(9–10), pp. 1080–1090. Available at: https://doi.org/10.1016/j.jclepro.2011.02.010.

Meng, Y. et al. (2019) ‘Enhancement of High Temperature Performance of Cement Blocks Via CO 2 Curing’, Science of the Total Environment, 671, pp. 827–837. Available at: https://doi.org/10.1016/j.scitotenv.2019.03.411.

Miller, S.A. and Moore, F.C. (2020) ‘Climate and Health Damages From Global Concrete Production’, Nature Climate Change, 10, pp. 439–443.

Mohamad, N. et al. (2021) ‘Environmental Impact of Cement Production and Solutions: A Review’, in Materials Today: Proceedings. Elsevier Ltd, pp. 741–746. Available at: https://doi.org/10.1016/j.matpr.2021.02.212.

Reddy, M.S., Dinakar, P. and Rao, B.H. (2018) ‘Mix Design Development of Fly Ash and Ground Granulated Blast Furnace Slag Based Geopolymer Concrete’, Journal of Building Engineering, 20, pp. 712–722. Available at: https://doi.org/10.1016/j.jobe.2018.09.010.

Siddique, R. (2011) ‘Utilization of Silica Fume in Concrete: Review of Hardened Properties’, Resources, Conservation and Recycling, 55(11), pp. 923–932. Available at: https://doi.org/10.1016/j.resconrec.2011.06.012.

SNI 0349 (1989) Bata Beton Untuk Pasangan Dinding. Badan Standardisasi Nasional Indonesia.

Sousa, V. and Bogas, J.A. (2021) ‘Comparison of Energy Consumption and Carbon Emissions from Clinker and Recycled Cement Production’, Journal of Cleaner Production, 306, pp. 1–13. Available at: https://doi.org/10.1016/j.jclepro.2021.127277.

Sultan, M.A., Kusnadi, K. and Adingku, J. (2022) ‘Determination of Geopolymer Mortar Characterization Using Fly Ash and Pumice Sand’, International Journal of GEOMATE, 23(100). Available at: https://doi.org/10.21660/2022.100.3630.

Sultan, M.A., Kusnadi, K. and Yudasaputra, M.T. (2018) ‘Effect of Pressure on Making of Cement Bricks From Pumice’, International Journal of Civil Engineering and Technology (IJCIET, 9(5), pp. 1084–1091. Available at: http://www.iaeme.com/IJCIET/index.asp1084http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=9&IType=5http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=9&IType=5http://www.iaeme.com/IJCIET/index.asp1085.

Thwe, E., Khatiwada, D. and Gasparatos, A. (2021) ‘Life Cycle Assessment of A Cement Plant in Naypyitaw, Myanmar’, Cleaner Environmental Systems, 2, pp. 1–9. Available at: https://doi.org/10.1016/j.cesys.2020.100007.

Turner, L.K. and Collins, F.G. (2013) ‘Carbon Dioxide Equivalent (CO2-e) Emissions: A Comparison Between Geopolymer and OPC Cement Concrete’, Construction and Building Materials, 43, pp. 125–130. Available at: https://doi.org/10.1016/j.conbuildmat.2013.01.023.

Wei, J. and Cen, K. (2019) ‘Empirical Assessing Cement CO2 Emissions Based on China’s Economic And Social Development During 2001–2030’, Science of the Total Environment, 653, pp. 200–211. Available at: https://doi.org/10.1016/j.scitotenv.2018.10.371.

Wilberforce, T. et al. (2019) ‘Outlook of Carbon Capture Technology and Challenges’, Science of the Total Environment, 657, pp. 56–72. Available at: https://doi.org/10.1016/j.scitotenv.2018.11.424.




DOI: http://dx.doi.org/10.29103/tj.v14i2.1151

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mufti Amir Sultan, Julham Adingku, Kusnadi Kusnadi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN: 2088-0651 

E-ISSN: 2502-1680

 Google Scholar

 
Accredited based on Sinta 3 based on the Decree of the Director General of Strengthening Research and Development of the Ministry of Research, Technology and Higher Education of the Republic of Indonesia Number 230/E/KPT/2022
Valid for 5 years, Volume 12 Number 2 Year 2022 to Volume 17 Number 1 Year 2027

 

Creative Commons "Attribution-ShareAlike”

Attibusion Internasional (CC BY-SA 4.0)




Published 2 times a year
March and September

Published by:
The Research institutions and community service (LPPM) Universitas Malikussaleh

In cooperation with Ikatan Sarjana Teknik Sipil (ISATSI NAD) Lhokseumawe


Web Analytics

View My Stats