Pengaruh Perubahan Temperatur Terhadap Struktur Jembatan Baja
Abstract
Abstrak
Kemajuan dalam teknologi rekayasa struktur telah membawa inovasi signifikan dalam pembangunan infrastruktur, termasuk pengembangan jembatan segmental baja. Studi ini bertujuan untuk menyelidiki dampak perubahan temperatur dan jenis perletakan terhadap perilaku struktur jembatan segmental baja, dengan fokus pada tiga kondisi perletakan yang berbeda: sendi-rol (SSC), sendi-sendi (FEC), dan penggunaan Lead Rubber Bearing (LRB). Pemodelan dilakukan menggunakan metode elemen hingga dalam perangkat lunak MidasCivil. Analisis finite element diarahkan untuk memahami deformasi dan distribusi tegangan dalam struktur jembatan di bawah beban mati dan variasi temperatur. Hasil studi menunjukkan bahwa perubahan temperatur menyebabkan deformasi yang signifikan pada struktur jembatan, dengan pola perilaku yang berbeda tergantung pada jenis perletakan. Perletakan Sendi-Rol dan penggunaan LRB cenderung menunjukkan respons deformasi yang serupa, sementara perletakan Sendi-Sendi menunjukkan perilaku yang berbeda. Selain itu, distribusi tegangan juga bervariasi tergantung pada kondisi perletakan, dengan Sendi-Sendi menghasilkan tegangan yang lebih tinggi pada beberapa titik tertentu.
Kata kunci: Temperatur, Perletakan, Jembatan Segmental Baja, Finite Element,
Abstract
Advancements in structural engineering have led to significant innovations in infrastructure development, notably segmental steel bridges. This study investigates the effects of temperature changes and different bearing conditions: simply supported condition (SSC), fixed end condition (FEC), and the implementation of Lead Rubber Bearing (LRB) on segmental steel bridge behavior. Utilizing finite element analysis use MidasCivil, the research examines deformation and stress distribution under dead loads and varying temperatures. Findings indicate temperature fluctuations induce significant deformations, with distinct responses based on bearing conditions. SSC and LRB show similar deformation patterns, while FEC behaves differently. Stress distribution varies accordingly, with FEC resulting in higher stresses at certain points. These insights enhance understanding of temperature and bearing effects on segmental steel bridges, informing maintenance strategies for durability. Validating computational models with field observations is recommended to ensure accurate simulations.
Keywords: Temperature, Boundary Condition, Segmental Steel Bridge, Finite Element
Keywords
Full Text:
PDFReferences
Abid, S. R., Tayşi, N., Özakça, M., Xue, J., & Briseghella, B. (2021). Finite element thermo-mechanical analysis of concrete box-girders. Structures, 33, 2424–2444. https://doi.org/10.1016/j.istruc.2021.06.009
Abid, S. R., Xue, J., Liu, J., Tayşi, N., Liu, Y., Özakça, M., & Briseghella, B. (2022). Temperatures and gradients in concrete Bridges: Experimental, finite element analysis and design. Structures, 37, 960–976. https://doi.org/10.1016/j.istruc.2022.01.070
Badan Standarisasi Nasional. (2016). Pembebanan untuk Jembatan. www.bsn.go.id
Brenner B.R, M. Sanayei, E.S. Bell, P.L. Rosenstrauch, E.J. Pheifer, & W.A. Marr. (2012). 3. The Influence of Temperature Changes on Bridge Structural Behavior.
christian. (2018). Evaluation Of Temperature Changes Effect To Dynamic Performances Of a Pinned-Support Steel-Arch-Bridge.
Christian, C., Rastandi, J. I., & Lase, Y. (2019). Temperature changes effects to dynamics performances of a pinned-supported steel-arch-bridge. IOP Conference Series: Materials Science and Engineering, 473(1). https://doi.org/10.1088/1757-899X/473/1/012029
He, J., Xin, H., Wang, Y., & Correia, J. A. F. O. (2021). Effect of temperature loading on the performance of a PC bridge in Oklahoma: Reliability analysis. Structures, 34, 51–60. https://doi.org/10.1016/j.istruc.2021.06.099
Herusiswoyo, M. A., & Ma’ruf, B. (2023). Analisis Uji Beban Jembatan dengan Total station. JGISE: Journal of Geospatial Information Science and Engineering, 6(1), 1. https://doi.org/10.22146/jgise.73182
Kurniawan Santoso, A., Sulistyo, D., Awaludin, A., Fajar Setiawan, A., Satyarno, I., Purnomo, S., & Harry, I. (2022). Structural Systems Comparison of Simply Supported PSC Box Girder Bridge Equipped with Elastomeric Rubber Bearing and Lead Rubber Bearing. Civil Engineering Dimension, 24(1), 19–30. https://doi.org/10.9744/ced.24.1.19-30
Ma’ruf, B., Aminullah, A., & Herusiswoyo, M. A. 2021 (22-30) @Ikatan Surveyor Indonesia-Teknik Geodesi UNDIP. Dalam Prosiding FIT ISI (Vol. 1).
Matiere, N., Ung, Q. H., & Nicolaudie, P. A. (2018). Unibridge®: A new concept in prefabricated modular bridge. Dalam Lecture Notes in Civil Engineering (Vol. 8, hlm. 981–987). Springer. https://doi.org/10.1007/978-981-10-6713-6_98
Menteri PUPR. (t.t.). Permen PUPR No.10 Tahun 2022.
Niu, Y., Wang, Y., & Tang, Y. (2020). Analysis of temperature-induced deformation and stress distribution of long-span concrete truss combination arch bridge based on bridge health monitoring data and finite element simulation. International Journal of Distributed Sensor Networks, 16(10). https://doi.org/10.1177/1550147720945205
Rastandi, J. I., Pramesti, K., & Orientilize, M. (2021). Forced vibration test of pedestrian steel bridge using eccentric mass shaker. IOP Conference Series: Earth and Environmental Science, 622(1). https://doi.org/10.1088/1755-1315/622/1/012010
Rastandi, J. I., Putra, I. A., & Orientilize, M. (2021). The dynamic test of simple span precast prestressed concrete bridge with elastomeric bearing support. IOP Conference Series: Earth and Environmental Science, 622(1). https://doi.org/10.1088/1755-1315/622/1/012012
Setiati, N. R., Jalan, P., & Jembatan, D. (2012). Kajian Analisis Respon Statis Jembatan Tipe Gelagar Beton Bertulang Dengan Metode Pembebanan (Loading Test). Dalam Industrial Research Workshop and National Seminar.
Soleh, C., & Rastandi, J. I. (2021). Alternatif Uji Beban Pada Struktur (Studi Kasus : Jembatan Baja). Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan, 5(1), 27. https://doi.org/10.24912/jmstkik.v5i1.7215
Xia, Q., Zhou, L., & Zhang, J. (2018). Thermal performance analysis of a long-span suspension bridge with long-term monitoring data. Journal of Civil Structural Health Monitoring, 8(4), 543–553. https://doi.org/10.1007/s13349-018-0299-y
Zhou, M. R., Shen, Q. F., Zhang, Z. N., Li, H. S., Guo, Z. Y., & Li, Z. B. (2013). Based on MIDAS/CIVIL the anchorage of mass concrete temperature field and stress field simulation analysis. Advanced Materials Research, 724–725, 1482–1488. https://doi.org/10.4028/www.scientific.net/AMR.724-725.1482
Zhu, Q.-X., Asce, S. M., Wang, H., Asce, M., Mao, J.-X., Wan, H.-P., Zheng, W.-Z., & Zhang, Y.-M. (2020). Investigation of Temperature Effects on Steel-Truss Bridge Based on Long-Term Monitoring Data: Case Study. https://doi.org/10.1061/(ASCE)
DOI: http://dx.doi.org/10.29103/tj.v14i2.1099
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Imam Nakhrowi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons "Attribution-ShareAlike”
Attibusion Internasional (CC BY-SA 4.0)
March and September
In cooperation with Ikatan Sarjana Teknik Sipil (ISATSI NAD) Lhokseumawe