Studi Perilaku Tiang Group Pada Lapisan Tanah Terlikuifaksi
Abstract
Abstrak
Likuifaksi merupakan satu fenomena yang terjadi pada lapisan tanah akibat gempa bumi. Pada saat terjadi likuifaksi tanah mengalami peningkatan tekanan air pori yang menyebabkan tanah kehilangan kuat geser sehingga mengalami penurunan tegangan efektif dan secara linier mengakibatkan penurunan kuat geser. Penelitian ini dibuat untuk mengetahui perubahan perilaku tiang akibat lapisan tanah terlikuifaksi disepanjang tiang. Semua analisa perubahan perilaku tiang dibandingkan dengan kondisi atau kondisi tidak ada lapisan terlikuifaksi, sehingga dapat diketahui perubahan perilaku tiang ketika ada lapisan teriluifaksi. Dari hasil analisa defleksi diketahui bahwa terjadi perubahan defleksi yang besar jika dibandingkan antara lapisan tidak terlikuifaksi dengan lapisan terlikuifaksi, yaitu dari 0,16 mm menjadi 4,32 mm atau meningkat sebesar 4.16 mm. Perubahan momen untuk lapisan tidak terlikuifaksi 23 kN menjadi 219 kN untuk kondisi lapisan terlikuifaksi atau meningkat sebesar 196 kN.m, hal yg sama pada perubahan daya dukung yang mengalami penurunan ketika terjadi likuifaksi, sehingga disimpulkan bahwa ada perubahan perilaku tiang jika terdapat lapisan terlikuifaksi.
Kata kunci: likuifaksi, sondir, daya dukung tiang, defleksi
Abstract
Liquefaction is a phenomenon that occurs in soil layers due to earthquakes. When liquefaction occurs, the water pressure of soil has increased which causes the soil to lose shear strength, resulting in a decrease in effective stress and linearly resulting in a decrease in shear strength. This research was conducted to determine changes of pile behavior due to liquefaction of the soil layer along the pile. All analyses of changes of pile behavior are compared with conditions where there is no liquefaction layer, so that changes of pile behavior can be seen when there is liquefaction layer of soil. The results of the deflection analysis, it is known that there is a large change in deflection when compared between the non-liquefaction layer and the liquefaction layer, namely from 0.16 mm to be 4.32 mm or increases 4.16 mm. The change in moment for the liquefaction layer is 23 kN to be 219 kN for the liquefaction layer condition or increases 196 kN.m, the same thing as the change in bearing capacity which decreases when liquefaction occurs, so it is concluded that there is a change of pile behavior if there is a liquefaction layer.
Keywords: liquefaction, CPT, bearing capacity of pile, deflection
Keywords
Full Text:
PDFReferences
Basavana Gowda, G.M. dkk. (2021) “Effect of Liquefaction Induced Lateral Spreading on Seismic Performance of Pile Foundations,” Civil Engineering Journal (Iran), 7, hal. 58–70. https://doi.org/10.28991/CEJ-SP2021-07-05.
Chang, M. (2022) “Influence of mis-assignment of groundwater level on liquefaction assessment of soils,” (March 2023).
Choudhury, D. dkk. (2015) “Seismic Liquefaction Hazard and Site Response for Design of Piles in Mumbai City,” Indian Geotechnical Journal, 45(1), hal. 62–78. https://doi.org/10.1007/s40098-014-0108-4.
Das, S., Parashar, T. dan Dey, Y. (2020) “Assessment of Liquefaction Potential for Seismic Risk Reduction in Northeast India,” International Journal of Engineering Applied Sciences and Technology, 5(8), hal. 219–228. https://doi.org/10.33564/ijeast.2020.v05i08.033.
Du, G. dkk. (2019) “Evaluation method for the liquefaction potential using the standard penetration test value based on the CPTU soil behavior type index,” Advances in Civil Engineering, 2019. https://doi.org/10.1155/2019/5612857.
Hussein, A.F. dan El Naggar, M.H. (2021) “Seismic axial behaviour of pile groups in non-liquefiable and liquefiable soils,” Soil Dynamics and Earthquake Engineering, 149(June), hal. 106853. https://doi.org/10.1016/j.soildyn.2021.106853.
Johari, A. dkk. (2020) “A comparative study in reliability analysis of liquefaction potential of layered soil,” (February), hal. 0–13.
Kheradi, H. dkk. (2019) “Liquefaction-Induced Buckling Failure of Group-Pile Foundation and Countermeasure by Partial Ground Improvement,” International Journal of Geomechanics, 19(5), hal. 1–16. https://doi.org/10.1061/(asce)gm.1943-5622.0001379.
Liliwarti dkk. (2020) “Liquefaction potential map based on coordinates in Padang city with google maps integration,” International Journal on Informatics Visualization, 4(1), hal. 32–34. https://doi.org/10.30630/joiv.4.1.312.
Mina, E., Kusuma, R.I. dan Sudirman, S. (2018) “Analisa Potensi Likuifaksi Berdasarkan Data Spt (Studi Kasusproyek Pembangunan Gedung Baru Untirta Sindang Sari ),” Jurnal Fondasi, 7(1), hal. 11–21. https://doi.org/10.36055/jft.v7i1.3298.
Ntritsos, N. dan Cubrinovski, M. (2020) “A CPT-based effective stress analysis procedure for liquefaction assessment,” Soil Dynamics and Earthquake Engineering, 131(October 2019), hal. 106063. https://doi.org/10.1016/j.soildyn.2020.106063.
Rahman, M.M. dan Sitharam, T.G. (2020) “Cyclic liquefaction screening of sand with non-plastic fines: Critical state approach,” Geoscience Frontiers, 11(2), hal. 429–438. https://doi.org/10.1016/j.gsf.2018.09.009.
Robertson, P.K. (2016) “Evaluating Soil Liquefaction and Post-earthquake deformations using the,” (January 2004).
Sainuddin, S. (2022) “Analisis Dampak Kerusakan Infrastruktur Akibat Likuifaksi Di Palu,” Jurnal Azimut, 4(2), hal. 78. https://doi.org/10.31317/jaz.v4i2.839.
Su, L. dkk. (2016) “Pile response to liquefaction-induced lateral spreading: A shake-table investigation,” Soil Dynamics and Earthquake Engineering, 82, hal. 196–204. https://doi.org/10.1016/j.soildyn.2015.12.013.
Viana da Fonseca, A. dkk. (2018) “Comparative analysis of liquefaction susceptibility assessment by CPTu and SPT tests,” Cone Penetration Testing 2018 - Proceedings of the 4th International Symposium on Cone Penetration Testing, CPT 2018, hal. 669–675.
Weaver, K.C. dkk. (2020) “A probabilistic model of aquifer susceptibility to earthquake-induced groundwater-level changes,” Bulletin of the Seismological Society of America, 110(3), hal. 1046–1063. https://doi.org/10.1785/0120180278.
Xu, B. dkk. (2020) “Experimental study of wave loads on elevated pile cap of pile group foundation for sea-crossing bridges,” Ocean Engineering, 197(October 2019). https://doi.org/10.1016/j.oceaneng.2019.106896.
Xu, L.Y. dkk. (2021) “Liquefaction-induced settlement of the pile group under vertical and horizontal ground motions,” Soil Dynamics and Earthquake Engineering, 144(March), hal. 106709. https://doi.org/10.1016/j.soildyn.2021.106709.
Yao, Y. dkk. (2021) “Evaluation of environmental engineering geology issues caused by rising groundwater levels in Xi’an, China,” Engineering Geology, 294(December 2020), hal. 106350. https://doi.org/10.1016/j.enggeo.2021.106350.
DOI: http://dx.doi.org/10.29103/tj.v14i1.983
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Adolf Situmorang
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons "Attribution-ShareAlike”
Attibusion Internasional (CC BY-SA 4.0)
March and September
In cooperation with Ikatan Sarjana Teknik Sipil (ISATSI NAD) Lhokseumawe