Analisis Galian Dalam Dengan Perkuatan Angkur dan Strut Menggunakan Model 3D di Jakarta Utara
Abstract
Abstrak
Penelitian ini dilakukan untuk meninjau performa galian pada tanah lunak yang diperkuat dua jenis sistem perkuatan, yaitu strut dan angkur. Galian dilakukan sedalam 8,5 m menggunakan metode full open cut dengan dua tipe diaphragm wall. Sisi galian dengan perkuatan strut dalam konfigurasi menyudut menghasilkan deformasi yang sangat besar dibandingkan dengan sisi galian dengan perkuatan angkur. Berdasarkan hasil monitoring yang dilakukan, deformasi sebesar 15 cm pada sisi galian dengan strut yang berbatasan dengan Hotel tidak menyebabkan kegagalan pada galian. Sementara sisi galian dengan angkur menunjukan nilai deformasi sebesar 3.5cm pada tahap akhir galian. Analisa balik pemodelan 3D dilakukan untuk mengetahui performa aktual dari galian dan kedua jenis sistem perkuatan. Berdasarkan hasil analisis galian, pemodelan 3D dengan model konstitutif tanah Hardening Soil dapat memodelkan karakteristik galian dengan baik. Deformasi pada sisi dinding galian dengan tebal 80 cm dan perkuatan strut menghasilkan deformasi dinding yang lebih besar disbanding dinding galian dengan tebal 60 cm dan perkuatan 2 level angkur. Deformasi pada sudut galian jauh lebih kecil dibandingkan sepanjang dinding galian.
Kata kunci: Galian Dalam, Strut, Angkur, Model 3D
Abstract
This study aims to analyze the performance of excavation on soft soil reinforced by two types of supports; the strut and anchor. Excavation depth was 8.5 meters using full open cut method with two types of diaphragm walls. Excavation sides supported by struts in angular configuration resulted in a significantly larger deformation compared with sides supported by anchors. Anchor-supported sides produced 3.5 centimeters of deformation. Meanwhile, although the strut-supported sides adjacent to hotel produced a large, 15-centimeters deformation, it did not result in excavation failure. Three-dimensional model back analysis was carried out to analyze the actual performance of the two types of excavation supports. Based on the results of the excavation analysis, 3D modelling with soil constitutive model of Hardening Soil can model the characteristics of the excavation well. Deformation on the excavation wall with a thickness of 80cm and strut reinforcement resulted in greater wall deformation than the excavation wall with a thickness of 60cm and 2-level anchor reinforcement. The deformation at the excavation corner is much smaller than along the excavation wall.
Keywords: Deep Excavation, Strut, Anchor, 3D Modelling
Keywords
Full Text:
PDFReferences
ACI Committee 318., American Concrete Institute., 2011. Building code requirements for structural concrete (ACI 318-11) and commentary. American Concrete Institute.
Ameratunga, J., Sivakugan, N., Das, B.M., 2016. Developments in Geotechnical Engineering Correlations of Soil and Rock Properties in Geotechnical Engineering.
Bono, N.A., Liu, T.K., Soydemir, C., 1992. Performance of an internally braced slurry-diaphragm wall for excavation support. ASTM 169–190.
Calvello, M., Finno, R.J., 2004. Selecting parameters to optimize in model calibration by inverse analysis. Computers and Geotechnics 31, 410–424.
Chew, S.H., Yong, K.Y., Lim, A.Y.K., 1997. Three-dimensional finite-element analysis of a strutted excavation. Computer methods and advances in geomechanics.
Clough, G.W., O’Rourke, T.D., 1990. Construction induced movements of Insitu Walls. ASCE 439–470.
Duncan, J.M., Chang, C.Y., 1970. Nonliniear analysis of stress and strain in soil. ASCE 96, 637–659.
Finno, R.J., Bryson, L.S., 2002. Response of Building Adjacent to Stiff Excavation Support System in Soft Clay. Perform. Constr. Facil. 16, 10–20.
Finno, R.J., Roboski, J.F., 2005. Three-Dimensional Responses of a Tied-Back Excavation through Clay. Geotechnical and Geoenviromental Engineering 131, 273–282.
FWHA, 1999. Geotechnical Circular No. 4 Ground Anchors and Anchored System.
Goh, A.T.C., Zhang, F., Zhang, W., Chew, O.Y.S., 2017. Assessment of strut forces for braced excavation in clays from numerical analysis and field measurements. Computers and Geotechnics 86, 141–149.
Hashash, Y.M.A., Whittle, A.J., 2002. Mechanisms of Load Transfer and Arching for Braced Excavations in Clay. Geotechnical and Geoenviromental Engineering 128, 187–197.
Lee, F.H., Yong, K.-Y., N Quan, K.C., Chee, K.-T., 1998. Effect of Corners in Strutted Excavations: Field Monitoring and Case Histories. Geotechnical and Geoenviromental Engineering 124, 339–349.
Lim, A., Ou, C.Y., Hsieh, P.G., 2010. Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. Journal of GeoEngineering 5, 9–20.
Lin, D.G., Chung, T.C., Phien-wej, N., 2003. Quantitative Evaluation of Corner Effect on Deformation Behavior of Multi-Strutted Deep Excavation in Bangkok Subsoil. Journal of southeast asian geotechnical society .
Mana, A.I., Clough, G.W., 1981. Prediction of Movements for Braced Cuts in Clay. ASCE 107, 759–777.
Ou, C.Y., 2006. Deep Excavation Theory and Practice.
Ou, C.Y., Chiou, D.-C., Wu, T.-S., 1996. Three-Dimensional Finite Element Analysis of Deep Excavations. Journal of Geotechnical Engineering 122.
Ou, C. Y., Hsieh, P., Chiou, D., 1993. Characteristics of ground surface settlement during excavation, Can. Geotech. J.
Ou, C.Y., Liao, J.T., Cheng, W.L., 2000. Building response and ground movements induced by a deep excavation. Geotechnique 50, 209–220.
Ou, C.-Y., Shiau, B.-Y., Wang, I.-W., 2000. Three-dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history.
PLAXIS, 2019. PLAXIS Manual.
Schanz, T., Vermeer, P.A., Bonnier, P.G., 1999. The Hardening Soil Model Formulation and Verification. Computational Geotechnics.
Wong, L.W., Patron, B.C., 1993. Settlements induced by deep excavations in Taipei.
DOI: https://doi.org/10.29103/tj.v12i2.725
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Copyright (c) Pio Kefas, Paulus Pramono Rahardjo, Aswin Lim
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons "Attribution-ShareAlike”
Attibusion Internasional (CC BY-SA 4.0)
March and September
In cooperation with Ikatan Sarjana Teknik Sipil (ISATSI NAD) Lhokseumawe