Komparasi Kuat Tekan Beton Geopolimer Berbahan Dasar Fly Ash Dengan Metode Curing Oven dan Suhu Ruang
Abstract
Penelitian ini mengkaji beton geopolimer yang diproduksi menggunakan fly ash dan bersumber dari hasil pembakaran batubara PLTU Tanjung Jati, Kabupaten Jepara, Jawa Tengah, Indonesia. Fly Ash yang digunakan dikategorikan jenis F. Alkali aktivator berbentuk sodium hidroksida (NaOH) dan sodium silikat (Na₂SiO₃) dengan molaritas (10M). Riset ini bertujuan mengetahui perbandingan kuat tekan maksimum binder dan beton geopolimer diumur 28 hari melalui 2 metode perawatan, dibiarkan didalam suhu ruangan dan di oven pada temperatur 60°C selama 24 jam. Rangkaian pengujian yang dilakukan berupa uji material fly ash metode X-Ray Flourence (XRF), slump, kuat tekan binder dan beton geopolimer. Perbandingan aktivator yang digunakan pada pengujian binder dan beton geopolimer adalah 1:2 dan 1:3. Hasil riset menunjukkan nilai kuat tekan binder dan beton maksimum umur 28 hari sebesar 37,48 Mpa dan 60,09 Mpa terdapat pada variasi binder 10-3CR (curing oven) dengan rasio perbandingan NaOH terhadap Na₂SiO₃ sebesar 1:3. Dari hasil analisa disimpulkan bahwa perawatan beton curing time 24 jam pada suhu 60°C memberikan kuat tekan maksimal dibandingkan dengan udara terbuka, hal ini disebabkan karena tipe material pembentuk fly ash proses hidrasinya sangat lambat, jika perawatan menggunakan oven maka proses hidrasi berlangsung lebih cepat sehingga tingkat kekerasan beton geopolimer akan lebih cepat pula. Disamping itu meningkatkan temperatur curing bisa mempercepat reaksi polimerisasi sehingga kuat tekan beton semakin meningkat akan tetapi pada suhu tertentu kuat tekan tersebut akan mengalami penurunan disebabkan sebagian air telah menguap sehingga kualitas beton geopolimer menjadi berkurang.
Kata kunci: fly ash, geopolimer, sodium hidroksida, sodium silikat, curing time
Full Text:
PDFReferences
ACI Manual of Concrete Practice parts 1 226.3R-3 (1993), Standard Practice for Selecting Propertions for Normal, Heavy, Weight and Mass Concrete. Washington, D.C.
Aleem, M.I.A, Arumairaj, P. . (2012) ‘Optimum Mix for Geopolymer Concrete’, Indian Journal Of Science and Technology, Volume 5, (Number 3).
ASTM-C39 (2010), Standard Test Method for Compressive Strength of Cylindrical Concrete, Annual Book of ASTM Standards.
ASTM C-618-03 (2010), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use, Annual Book of ASTM Standards.
ASTM C39/C39M (2003), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens 1, ASTM Standard Book.
Barbosa, V.F.F, K.J.D. MacKenzie, dan C. T. (2000), ‘Sythesis Characterisation of Material Based on Inorganic Polymmers of Alumina dan Silica: Sodium Polysialate Polimers’, Journal of Inorganic Material, Vol. 2. No 4. Hal 309-317, Vol. 2(No 4), pp. 309–317.
Davidovits, J. (1994), ‘Properties of Geopolymer Cements’, First International Conference on Alkaline Cements and Concretes, pp. 131–149.
Davidovits, J. (2005), ‘Geopolymer chemistry and sustainable development. The Poly (sialate ) terminology : a very useful and simple model for the promotion and understanding of green-chemistry.’, Geopolymer chemistry and sustainable Development., (July 2005).
Davidovits, J. (2020), Geopolymer Chemistry and Applications. 5-th edition, J. Davidovits.–Saint-Quentin, France.
H.Xu and Deventer, J. V. (2002), The geopolymerisation of alumino-silicate minerals, International journal of mineral processing.
Hardjito, D. et al. (2004) ‘Factors influencing the compressive strength of fly ash-based geopolymer concrete’, Civil Engineering 6(2), pp. 88–93.
Hardjito, D., Cheak, C. C. and Lee Ing, C. H. (2008) ‘Strength and Setting Times of Low Calcium Fly Ash-based Geopolymer Mortar’, Modern Applied Science, 2(4). doi: 10.5539/mas.v2n4p3.
Manuahe, R., Sumajouw, M. D. J. and Windah, R. S. (2014) ‘Kuat Tekan Beton Geopolymer Berbahan Dasar Abu Terbang (Fly Ash)’, Jurnal Sipil Statik, 2(6), pp. 277–282.
Palomo, A., Grutzeck, M. W. and Blanco, M. T. (1999) ‘Alkali-activated fly ashes: A cement for the future’, Cement and Concrete Research, 29(8), pp. 1323–1329. doi: 10.1016/S0008-8846(98)00243-9.
Provis, J. L., Yong, C. Z., Duxson, P., & van Deventer, J. S. (2009) ‘Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers’, Colloids and Surfaces A: Physicochemical and Engineering Aspects., 336(1-3)(57–63).
Saloni, Parveen, Yan Lim, Y., et al. (2021) ‘Influence of Portland cement on performance of fine rice husk ash geopolymer concrete: Strength and permeability properties’, Construction and Building Materials, 300(July). doi: 10.1016/j.conbuildmat.2021.124321.
Saloni, Parveen, Lim, Y. Y., et al. (2021) ‘Sustainable alkali activated concrete with fly ash and waste marble aggregates: Strength and Durability studies’, Construction and Building Materials, 283(March). doi: 10.1016/j.conbuildmat.2021.122795.
Sarkar, A. et al. (2016) ‘Compressive Strength of Sustainable Concrete Combining Blast Furnace Slag and Fly Ash’, p. 4.
SNI 1974 (2011) Cara Uji Kuat Tekan Beton dengan Benda Uji Silinder, Badan Standardisasi Nasional Indonesia.
DOI: https://doi.org/10.29103/tj.v12i2.714
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Juandra Hartono, Juandra Hartono
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons "Attribution-ShareAlike”
Attibusion Internasional (CC BY-SA 4.0)
March and September
In cooperation with Ikatan Sarjana Teknik Sipil (ISATSI NAD) Lhokseumawe