Model Prototipe Alih Ragam Hujan Ke Debit Menggunakan Data Satelit TRMM Dan Jaringan Syaraf Tiruan
Abstract
Abstrak
Ketersediaan dan akurasi data hujan maupun debit menjadi masalah umum di setiap DAS termasuk Sub DAS Lesti. Penelitian ini fokus pada kalibrasi dan validasi data satelit TRMM terhadap pos hujan lapangan. selain itu, bertujuan untuk mengembangkan model prototipe alih ragam hujan ke debit menggunakan JST. Pemodelan ini memanfaatkan data masukan hidrologi, termasuk data satelit TRMM, hari hujan, evaporasi, dan penggunaan lahan, serta data target debit dari Sub DAS Lesti. Hasil kalibrasi dan validasi data satelit TRMM menghasilkan nilai NSE sebesar 0,97 (sangat baik) dan koefisien korelasi (R) sebesar 1,00 (sangat kuat). Selain itu, hasil pemodelan diperoleh kalibrasi terbaik model prototipe yang mengkonversi data hujan menjadi debit menggunakan JST dengan fungsi transfer logsig, menghasilkan nilai koefisien korelasi R = 0,98897 (sangat kuat) dengan skema arsitektur jaringan 8-2-10-1 (terdiri dari delapan lapisan masukan, dua lapisan tersembunyi, sepuluh neuron, satu lapisan keluaran) pada 3000 epochs.
Kata kunci: Hujan, Debit, TRMM, Jaringan Syaraf Tiruan
Abstract
The availability and accuracy of rain and discharge data is a common problem in every watershed, including the Lesti sub-watershed. This research focuses on the calibration and validation of TRMM satellite data on field rain posts. Apart from that, it aims to develop a prototype model for transferring rainfall variations to discharge using ANN. This modeling utilizes hydrological input data, including TRMM satellite data, rainy days, evaporation, and land use, as well as discharge target data from the Lesti Sub-watershed. The results of calibration and validation of TRMM satellite data produced an NSE value of 0.97 (very good) and a correlation coefficient (R) of 1.00 (very strong). In addition, the modeling results obtained the best calibration of the prototype model which converts rain data into discharge using ANN with the logsig transfer function, producing a correlation coefficient value of R = 0.98897 (very strong) with an 8-2-10-1 network architecture scheme (consisting of eight input layers, two hidden layers, ten neurons, one output layer) at 3000 epochs.
Keywords: Rainfall, Discharge, TRMM, Artificial Neural Network
Keywords
Full Text:
PDFReferences
Darmawan, A.A., Suhardjono, Bisri, M., Suhartanto, E., 2021. Assessment of Spatial Changes of LULC Dynamics, Using Multi-Temporal Landsat Data (Case Study: Lesti Sub Watershed, Malang Regency, Indonesia). IOP Conf. Ser. Earth Environ. Sci. 930, 1–7.
Elbeltagi, A., Nagy, A., Mohammed, S., Pande, C.B., Kumar, M., Bhat, S.A., Zsembeli, J., Huzsvai, L., Tamás, J., Kovács, E., Harsányi, E., Juhász, C., 2022. Combination of Limited Meteorological Data for Predicting Reference Crop Evapotranspiration Using Artificial Neural Network Method. Agronomy 12, 1–18. https://doi.org/10.3390/agronomy12020516.
Hermawan, A., 2006. Jaringan Saraf Tiruan: Teori dan Aplikasi, Penerbit Andi.
Hinton, G.E., Osindero, S., Teh, Y.-W., 2006. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 18, 1527–1554. https://doi.org/10.7763/ijesd.2010.v1.67.
Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., Stocker, E.F., Wolff, D.B., 2007. The TRMM Multi-satellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 8, 38–55. https://doi.org/10.1175/JHM560.1.
Iguchi, T., Kozu, T., Meneghini, R., Awaka, J., Okamoto, K.I., 2000. Rain-Profiling Algorithm for the TRMM Precipitation Radar. J. Appl. Meteorol. 39, 2038–2052. https://doi.org/10.1175/1520-0450(2001)040<2038:rpaftt>2.0.co;2.
Jabbari, A., Bae, D.H., 2018. Application of Artificial Neural Networks for Accuracy Enhancements of Real-Time Flood Forecasting in The Imjin Basin. Water (Switzerland) 10, 1–20. https://doi.org/10.3390/w10111626.
Kim, S., Singh, V.P., 2015. Spatial Disaggregation of Areal Rainfall Using Two Different Artificial Neural Networks Models. Water (Switzerland) 7, 2707–2727. https://doi.org/10.3390/w7062707.
Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A.T.C., Stocker, E., Adler, R.F., Hou, A., Kakar, R., Wentz, F., Ashcroft, P., Kozu, T., Hong, Y., Okamoto, K., Iguchi, T., Kuroiwa, H., Im, E., Haddad, Z., Huffman, G., Ferrier, B., Olson, W.S., Zipser, E., Smith, E.A., Wilheit, T.T., North, G., Krishnamurti, T., Nakamura, K., 2000. The Status of the Tropical Rainfall Measuring Mission (TRMM) after Two Years in Orbit. J. Appl. Meteorol. 39, 1965–1982. https://doi.org/10.1175/1520-0450(2001)040<1965:tsottr>2.0.co;2.
LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444. https://doi.org/10.1038/nature14539.
Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 50, 885–900. https://doi.org/10.13031/2013.23153.
Nogueira, S.M.C., Moreira, M.A., Volpato, M.M.L., 2018. Evaluating Precipitation Estimates from Eta, TRMM, and CHRIPS Data in The South-Southeast Region of Minas Gerais State-Brazil. Remote Sens. 10, 1–16. https://doi.org/10.3390/rs10020313.
Obasi, A.A., Ogbu, K.N., Orakwe, L.C., Ahaneku, I.E., 2020. Rainfall-River Discharge Modelling for Flood Forecasting Using Artificial Neural Network (ANN). J. Water L. Dev. 44, 98–105. https://doi.org/10.24425/jwld.2019.127050.
Omotosho, T. V., Mandeep, J.S., Abdullah, M., Adediji, A.T., 2013. Distribution of One-Minute Rain Rate in Malaysia Derived from TRMM Satellite Data. Ann. Geophys. 31, 2013–2022. https://doi.org/10.5194/angeo-31-2013-2013.
Pakoksung, K., Koontanakulvong, S., Sriaiyawat, A., 2012. Satellite Data Application for Flood Simulation, in: PAWEES 2012 International Conference. pp. 1–7.
Pratiwi, D.W., Sujono, J., Rahardjo, A.P., 2017. Evaluasi Data Hujan Satelit Untuk Prediksi Data Hujan Pengamatan Menggunakan Cross Correlation. J. Semin. Nas. Sains dan Teknol. UNJ 025, 1–11.
Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning Representations by Back-Propagating Errors. Nature 323, 533–536. https://doi.org/10.7551/mitpress/1888.003.0013.
Schmidhuber, J., 2015. Deep Learning in neural networks: An overview. Neural Networks 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003.
Sekaranom, A.B., Nurjani, E., Hadi, M.P., Marfai, M.A., 2018. Comparison of TRMM Precipitation Satellite Data over Central Java Region - Indonesia. Quaest. Geogr. 37, 97–114. https://doi.org/10.2478/quageo-2018-0028.
Simpson, J., Adler, R.F., North, G.R., 1988. A Proposed Tropical Rainfall Measuring Mission (TRMM) Satellite. Bull. Am. Meteorol. Soc. 69, 278–295. https://doi.org/10.1175/1520-0477(1988)069<0278:aptrmm>2.0.co;2.
Soewarno, 1995. Hidrologi: Aplikasi Metode Statisik Untuk Analisa Data Jilid 2, Penerbit Nova.
Sugiyono, 2007. Statistika Untuk Penelitian, Alfabeta.
Suhartanto, E., Wahyuni, S., Mufadhal, K.M., 2021. Estimation of Rainfall from Climatology Data Using Artificial Neural Networks in Palembang City South Sumatera, in: IOP Conference Series: Earth and Environmental Science. pp. 1–8. https://doi.org/10.1088/1755-1315/930/1/012062.
Suharyanto, A., Suhartanto, E., Pudyono, 2013. The Use of Satellite Remote Sensing Data and Geographic Information Systems on Critical Land Analysis. Agrivita 35, 119–126. https://doi.org/10.17503/Agrivita-2013-35-2-p119-126.
Syaifullah, M.D., 2014. Validasi Data TRMM Terhadap Data Curah Hujan Aktual di Tiga DAS di Indonesia. J. Meteorol. dan Geofis. 15, 109–118.
Tama, D.R., Limantara, L.M., Suhartanto, E., Devia, Y.P., 2023. The Reliability of W-flow Run-off-Rainfall Model in Predicting Rainfall to the Discharge. Civ. Eng. J. 9, 1768–1778. https://doi.org/10.28991/CEJ-2023-09-07-015.
Tan, M.L., Duan, Z., 2017. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sens. 9, 1–16. https://doi.org/10.3390/rs9070720.
Tarnavsky, E., Mulligan, M., Ouessar, M., Faye, A., Black, E., 2013. Dynamic Hydrological Modeling in Drylands with TRMM: Based Rainfall. Remote Sens. 5, 6691–6716. https://doi.org/10.3390/rs5126691.
Toth, E., 2009. Classification of Hydro-Meteorological Conditions and Multiple Artificial Neural Networks for Streamflow Forecasting. Hydrol. Earth Syst. Sci. 13, 1555–1566. https://doi.org/10.5194/hess-13-1555-2009.
Worqlul, A.W., Maathuis, B., Adem, A.A., Demissie, S.S., Langan, S., Steenhuis, T.S., 2014. Comparison of Rainfall Estimations by TRMM 3B42, MPEG, and CFSR with Ground-Observed Data for The Lake Tana Basin in Ethiopia. Hydrol. Earth Syst. Sci. 18, 4871–4881. https://doi.org/10.5194/hess-18-4871-2014.
Yuan, F., Zhang, L., Soe, K.M.W., Ren, L., Zhao, C., Zhu, Y., Jiang, S., Liu, Y., 2019. Applications of TRMM- and GPM-Era Multiple-Satellite Precipitation Products for Flood Simulations at Sub-Daily Scales in a Sparsely Gauged Watershed in Myanmar. Remote Sens. 11, 1–31. https://doi.org/10.3390/rs11020140.
Yuan, F., Zhang, L., Wah Win, K.W., Ren, L., Zhao, C., Zhu, Y., Jiang, S., Liu, Y., 2017. Assessment of GPM and TRMM Multi-Satellite Precipitation Products in Streamflow Simulations in a Data Sparse Mountainous Watershed in Myanmar. Remote Sens. 9, 1–23. https://doi.org/10.3390/rs9030302.
DOI: https://doi.org/10.29103/tj.v15i1.1219
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ery Suhartanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons "Attribution-ShareAlike”
Attibusion Internasional (CC BY-SA 4.0)
March and September
In cooperation with Ikatan Sarjana Teknik Sipil (ISATSI NAD) Lhokseumawe