Perancangan Dan Analisis Galian Dalam Dengan Turap Serta Strut Pada Tanah Lempung Kaku
Abstract
Abstrak
Tanah lempung kaku adalah tanah yang memiliki kohesi yang tinggi untuk menahan tekanan tanah pada kedalaman tertentu. Meskipun memiliki kohesi yang tinggi, galian pada tanah lempung kaku tetap dapat mengalami pergerakan atau longsor jika galian tidak diberi turap dan penyangga (strut) yang cukup karena gaya geser yang bekerja pada sisi galian menyebabkan tanah bergerak atau runtuh. Di beberapa negara, banyak insiden keruntuhan galian dalam yang disebabkan oleh kegagalan sistem galian berturap yang mengakibatkan kerugian finansial dan korban jiwa oleh karena itu, perencanaan sistem galian berturap yang aman dan efektif sangat penting untuk mencegah kegagalan dalam konstruksi galian. Penelitian ini bertujuan untuk mendapatkan kedalaman pemancangan turap, spesifikasi turap dan kapasitas strut untuk kedalaman galian 10 m dan lebar galian 6.9 m. Hasil perancangan didapatkan kedalaman pemancangan turap aktual 10,2 m sehingga panjang total turap adalah 20,2 m. Hasil perhitungan analitis didapatkan nilai momen lentur sebesar 78,3 kN.m/m dan dari hasil analisis numerik didapatkan nilai momen lentur sebesar 62,10 kN/m/m. Berdasarkan kedua nilai tersebut didapatkan spesifikasi turap profil U dengan penampang tipe II. Hasil analisis kapasitas strut didapatkan nilai kekuatan tekan aksial yang diizinkan sebesar 2.500, 9 kN lebih besar dari beban rencana strut yaitu 518,9 kN, maka strut mampu menahan beban yang diterima oleh turap.
Kata kunci: kohesi, kedalaman pemancangan, spesifikasi, momen lentur, kapasitas strut
Abstract
Stiff clay is soil with high cohesion to withstand soil pressure at a certain depth. Despite having high cohesion excavations in stiff clay can still experience movement or landslides if the excavation is not supported sufficiently because the shear force acting on the side of the excavation causes the soil to move or collapse. In various countries, there have been many incidents of deep excavation collapse caused by the failure of the sheet pile excavation system, which resulted in financial losses and casualties. Therefore, planning a safe and effective sheet pile excavation system is essential to prevent failure in excavation construction. This study aims to obtain the actual depth of sheet pile penetration, specifications, and the capacity of the struts for an excavation depth of 10 m and an excavation width of 6.9 m. The design results obtained the actual penetration depth of 10.2 m, so that the total length of the sheet pile 20.2 m. The analytical calculation results obtained a bending moment value of 78.3 kN.m/m, and numerical analysis results obtained a bending moment value of 62.10 kN/m/m. Based on these two values, the specifications of the U-profile sheet pile with a type II cross-section were obtained. The analysis of the strut's capacity obtained an allowable axial compressive strength value of 2,500.9 kN greater than the design load of the struts, which is 518.9 kN, so that the struts can withstand the load.
Keywords: cohesion, penetration depth, spesification, bending moment, struts capacity
Keywords
Full Text:
PDFReferences
Advanced Structural Analysis and Design (2021) Millennium Tower – Bangunan Tinggi yang Tenggelam (Part 1), https://ryanrakhmats.wordpress.com/2021/09/19/millennium-tower-bangunan-tinggi-yang-tenggelam-part-1/.
Aldo, A. and Susilo, A.J. (2018) ‘Analisis Pengaruh Tahapan Penggalian Basement Menggunakan Aplikasi Bmcolpy/G dan Plaxis 2d’, Jurnal Mitra Teknik Sipil , 1(2), pp. 149–158.
Apriyono, A. and Sumiyanto (2010) ‘Tinjauan Kekuatan Sistem Penyangga Terowongan dengan Menggunakan Metode Elemen Hingga’, Dinamika Rekayasa, 6(1), pp. 33–38.
Chowdhury, S.S., Deb, K. and Sengupta, A. (2013) ‘Estimation of Design Parameters for Braced Excavation: Numerical Study’, International Journal of Geomechanics, pp. 234–247.
Christian, M.A., Suwarno and Arif, M. (2021) ‘Alternatif Perencanaan Dinding Penahan Tanah dan Pondasi pada Basement Gedung Menara Mandiri Denpasar’, Jurnal Teknik ITS, 10(2).
Chungsik, Y. and Dongyeob, L. (2008) ‘Deep Excavation-Induced Groundsurface Movement Characteristics’, Computers and Geotechnics, 32(2), pp. 231–252.
Ciancimino, A. et al. (2024) ‘A Preliminary Investigation on The Mechanical Behaviour of A Stiff Italian Clay in The Context of Hydrogen Storage’, Geomechanics for Energy and the Environment, 38, p. 100562. Available at: https://doi.org/10.1016/j.gete.2024.100562.
Costa, P.A., Borges, J.L. and Fernandes, M.M. (2007) ‘Analysis of a Braced Excavation in Soft Soils Considering the Consolidation Effect’, Geotechnical and Geological Engineering, 25(6), pp. 617–629.
Das, B.M., Endah, N. and Mochtar, I.B. (1995) Mekanika Tanah: Prinsip-Prinsip Rekayasa Geoteknis. Jilid 1. Erlangga.
Das, B.M. and Sivakugan, N. (2019) Principles of Foundation Engineering. Ninth edition. Boston, USA: Cengage Learning, Inc.
Dinakr, K.M. and Prasad, R.K. (2013) ‘Effect of Deep Excavation on Adjacent Buildings By Diaphragm Wall Technique Using PLAXIS ’, Journal of Mechanical and Civil Engineering [Preprint].
ESC Steel Indonesia (no date) ESC Hot Rolled U Sheet Piles Inventory - Readily Available In Indonesia, https://www.escsteel.co.id/u-series.
Febrian, A. and Makarim, C.A. (2019) ‘Analisis Perilaku Tanah Dispersif Terhadap Dinding Penahan Tanah Dalam Pekerjaan Dewatering Konstruksi Basement’, Jurnal Mitra Teknik Sipil , 2(1), pp. 87–94.
Gouw, T.L. (2004) ‘Keruntuhan Galian Dalam - Apakah Penyebabnya?’, Pertemuan Ilmiah Tahunan HATTI, pp. 1–16.
Kefas, P., Rahardjo, P.P. and Lim, A. (2022) ‘Analisis Galian Dalam Dengan Perkuatan Angkur dan Strut Menggunakan Model 3D di Jakarta Utara’, Teras Jurnal, 12(2).
Livando, R. and Kawanda, A. (2020) ‘Perancangan Dinding Penahan Tanah pada Basement dengan Dukungan Strut-Beam’, Jurnal Mitra Teknik Sipil, 3(3), p. 823. Available at: https://doi.org/10.24912/jmts.v3i3.8748.
Maharani, T., Nurtjahjaningtyas, I. and Wicaksono, L.A. (2021) ‘Desain Ulang Dinding Penahan Tanah Menggunakan Dinding Diafragma dan Angkur pada Tanah Lunak (Studi Kasus: Grand Dharmahusada Lagoon) 1 Redesign Retaining Wall Using Diaphragm Wall and Ground Anchor in Soft Soil (Case Study: Grand Dharmahusada Lagoon)’, Jurnal Rekayasa Sipil dan Lingkungan, 5(2), pp. 142–154.
Mini M.P., Kurian, B. and James, A. (2018) ‘Theoretical Study on the Analysis of Diaphragm Wall’, International Research Journal of Engineering and Technology (IRJET), 5(5), pp. 4089–4092.
Ng, C.W.W. and Lings, M.L. (1995) ‘Effects of Modeling soil Non-Linearity and Wall Installation on Back-Analysis of Deep Excavation in Stiffclay’, Journal of Geotechnical Engineering, 121(10).
Puller, M. (1996) Deep Excavations a Practical manual. First edition. Thomas Telford Publishing.
Susanto, M.M. and Susilo, A.J. (2022) ‘Perencanaan Sistem Penunjang untuk Mengatasi Penambahan Deformasi Dinding Diafragma pada Proyek Galian Basemen’, Jurnal Mitra Teknik Sipil , 5(4), pp. 751–766.
Suwandi and Rahayu, T. (2014) ‘Evaluasi Penggunaan Dinding Penahan Tanah pada Tanah Berkohesi Rendah terhadap Penambahan Soldier Pile’, Jurnal Konstruksia | Volume 6 Nomer 1| Desember 2014, 6(1), pp. 103–112.
Vaziri, H.H. (1996) ‘Numerical Study of Parameters Influencing the Response of Flexible Retaining Walls’, Canadian Geotechnical Journal, 33, pp. 290–308.
Wibisono, Zayadi, J.E. and Ruwaida (2012) ‘Evaluasi Pergerakan Tanah pada “Diaphragm Wall dan Soldier Piles” Selama Pelaksanaan Konstruksi Galian Dalam’, Jurnal Geoteknik, 6, pp. 66–74.
Zhang, W. et al. (2019) ‘Estimation of Strut Forces for Braced Excavation in Granular Soils from Numerical Analysis and ase Histories’, Computers and Geotechnics, 106, pp. 286–295.
DOI: https://doi.org/10.29103/tj.v15i1.1209
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Rina Yuliet

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons "Attribution-ShareAlike”
Attibusion Internasional (CC BY-SA 4.0)
March and September
In cooperation with Ikatan Sarjana Teknik Sipil (ISATSI NAD) Lhokseumawe