Low Impact Development-Based Drainage Design in Residential Areas: A Case Study of Mastrip Housing
Abstract
Abstrak
Drainase konvensional menghadapi tantangan yang diperparah oleh peningkatan limpasan permukaan. Rain barrel adalah salah satu teknik Low Impact Development (LID) yang menyediakan penampung sementara yang berpotensi mengurangi limpasan. Oleh karena itu, penelitian ini menyelidiki penerapan rain barrel untuk meningkatkan ketahanan terhadap banjir di Mastrip Housing. Menggunakan Storm Water Management Model (SWMM), limpasan hujan dimodelkan dalam kondisi sebelum dan sesudah implementasi di 71 subcatchment untuk menilai dampak infrastruktur LID. Hasilnya mengungkapkan bahwa rain barrel dapat mengurangi puncak limpasan sebesar 11% hingga 51%, dengan rata-rata pengurangan sebesar 12%. Efektivitasnya bervariasi, dipengaruhi oleh kepadatan rain barrel, cakupan area, dan penggunaan lahan. Ada tren yan menunjukkan subcatchment dengan area kecil dan unit rain barrel lebih banyak menunjukkan pengurangan peak runoff yang lebih besar, menekankan pentingnya pertimbangan rasio. Meskipun demikian, penelitian ini menemukan bahwa penggunaan rain barrel tidak selalu berhasil dalam semua situasi. Sementara mereka mungkin efektif dalam meminimalkan limpasan di beberapa lokasi, efektivitasnya bervariasi di tempat lain bahkan di area perumahan yang sama. Oleh karena itu, metode infiltrasi LID dapat dipertimbangkan untuk meningkatkan efektivitas pengurangan. Penelitian ini memberikan wawasan bagi pengembang properti menuju perumahan ramah lingkungan dan pembangunan berkelanjutan dengan penerapan rain barrel dan LID.
Kata kunci: Low-Impact Development (LID), Strategi, Stormwater Management Model, Rain Barrel, Peak Runoff
Abstract
The conventional drainage face challenges exacerbated by increased surface runoff. Rain barrels are one of the Low Impact Development (LID) techniques that provide temporary storage which potentially can reduce runoff. Therefore, this study investigates the application of rain barrels to enhance flood resilience in Mastrip Housing. Using the Storm Water Management Model (SWMM), rainfall runoff was modeled under pre- and post-implementation conditions in 71 sub-catchments to assess LID infrastructure impact. Results reveal rain barrels can reduce peak runoff by 11% to 51%, averaging a 12% reduction. The effectiveness varies, influenced by rain barrel density, area coverage, and land use. There is trend revealed, exhibiting sub-catchments with small area and more rain barrel unit showing bigger peak runoff reductions, emphasizing the necessity of ratio consideration. Nonetheless, this study finds that the usage of rain barrels is not equally successful in all situations. While they may effectively minimize runoff in some locations, their efficacy varies elsewhere even in the same housing area. Therefore, infiltration LID methods can be considered to improve the effectiveness of reduction. This study provides insights for property developers towards environmentally friendly housing and sustainable development with rain barrel and LID implementation.
Keywords: Low-Impact Development (LID), Strategy, Stormwater Management, Rain Barrel, Peak Runoff
Keywords
Full Text:
PDFReferences
Arifin, I. M., Yusup, M. I., & Pangesti, F. S. P. (2022). Perencanaan Sistem Drainase SMKN 1 Kragilan Kabupaten Serang. Jurnal Lingkungan Dan Sumberdaya Alam (JURNALIS), 5(1), 61–72. https://doi.org/10.47080/jls.v5i1.1912
Arjenaki, M. O., Sanayei, H. R. Z., Heidarzadeh, H., & Mahabadi, N. A. (2021). Modeling and investigating the effect of the LID methods on collection network of urban runoff using the SWMM model (case study: Shahrekord City). In Modeling Earth Systems and Environment (Vol. 7, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40808-020-00870-2
Aves, F. A. (2022). Rain Barrel Implementation For Urban Runoff Mitigation. International Research Journal of Advanced Engineering and Science, 7(2), 255–260.
Bakhshipour, A. E., Dittmer, U., Haghighi, A., & Nowak, W. (2021). Toward Sustainable Urban Drainage Infrastructure Planning: A Combined Multiobjective Optimization and Multicriteria Decision-Making Platform. Journal of Water Resources Planning and Management, 147(8). https://doi.org/10.1061/(asce)wr.1943-5452.0001389
Cai, Z., Zhu, R., Ruggiero, E., Newman, G., & Horney, J. A. (2023). Calculating the Environmental Impacts of Low-Impact Development Using Long-Term Hydrologic Impact Assessment: A Review of Model Applications. In Land (Vol. 12, Issue 3). MDPI. https://doi.org/10.3390/land12030612
Desvina, A. P., Novia, S. A., Zein, M., Yendra, R., Hendri, M., & Fudholi, A. (2019). Log pearson III distribution and gumbel distribution model for rainfall data in pekanbaru. International Journal of Engineering and Advanced Technology, 9(1), 803–807. https://doi.org/10.35940/ijeat.A1411.109119
Ghimire, A. B., Banjara, M., Bhusal, A., & Kalra, A. (2023). Evaluating the Effectiveness of Low Impact Development Practices against Climate Induced Extreme Floods. International Journal of Environment and Climate Change, 13(8), 288–303. https://doi.org/10.9734/ijecc/2023/v13i81953
González-álvarez, Á., Viloria-Marimón, O. M., Coronado-Hernández, Ó. E., Vélez-Pereira, A. M., Tesfagiorgis, K., & Coronado-Hernández, J. R. (2019). Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean Region. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020358
Hidayah, E., Widiarti, W. Y., Wiyono, R. U. A., Dermawan, V., Fadhilah, D., & Tahir, W. (2024). Benefit–cost analysis of a low-impact development design. Water Practice & Technology. https://doi.org/10.2166/wpt.2024.017
Jemberie, M. A., & Melesse, A. M. (2021). Urban flood management through urban land use optimization using lid techniques, city of Addis Ababa, Ethiopia. Water (Switzerland), 13(13). https://doi.org/10.3390/w13131721
Khadka, S., Shrestha, K. K., & Basnet, K. (2020). Sustainable Urban Storm Water Drainage Design using SWMM: a Case Study of Lamachaur, Pokhara, Nepal. In Research Inventy: International Journal of Engineering And Science (Vol. 10, Issue 8).
Kuok, K. K., Chiu, P. C., Chin, M. Y., Rahman, R., & Bakri, M. K. Bin. (2024). Effectiveness of bioretention system and vegetated swale for reducing urban flood risk in equatorial region: a case study in Kuching, Malaysia. Sustainable Water Resources Management, 10(2). https://doi.org/10.1007/s40899-024-01081-8
Kurniawan, V. (2019). Distribution fitting on rainfall data in Jakarta. IOP Conference Series: Materials Science and Engineering, 650(1). https://doi.org/10.1088/1757-899X/650/1/012060
Lee, H., Woo, W., & Park, Y. S. (2020). A User-Friendly Software Package to Develop Storm Suggest Low Impact Development Scenarios. Water (Switzerland), 12. https://doi.org/10.3390/w12092344
Legese, B., & Gumi, B. (2020). Flooding in Ethiopia; Causes, Impact, and Coping Mechanism. A Review. International Journal of Research and Analytical Reviews (IJRAR) Www.Ijrar.Org, 7(3), 707. www.ijrar.org
Li, F., Chen, J., Engel, B. A., Liu, Y., Wang, S., & Sun, H. (2021). Assessing the effectiveness and cost efficiency of green infrastructure practices on surface runoff reduction at an urban watershed in China. Water (Switzerland), 13(1). https://doi.org/10.3390/w13010024
Limantara, L. M. (2018). Rekayasa Hidrologi (R. I. Utami, Ed.).
Luan, Q., Fu, X., Song, C., Wang, H., Liu, J., & Wang, Y. (2017). Runoff effect evaluation of LID through SWMM in typical mountainous, low-lying urban areas: A case study in China. Water (Switzerland), 9(6). https://doi.org/10.3390/w9060439
Nazari, A., Roozbahani, A., & Hashemy Shahdany, S. M. (2023). Integrated SUSTAIN-SWMM-MCDM Approach for Optimal Selection of LID Practices in Urban Stormwater Systems. Water Resources Management, 37(9), 3769–3793. https://doi.org/10.1007/s11269-023-03526-9
Norrulashikin, S. M., Yusof, F., Mohd Nor, S. R., & Kamisan, N. A. B. (2021). Best Fitted Distribution For Meteorological Data In Kuala Krai. Journal of Statistical Modelling and Analytics, 3(1), 16–25. https://doi.org/10.22452/josma.vol3no1.2
Oberascher, M., Kinzel, C., Kastlunger, U., Kleidorfer, M., Zingerle, C., Rauch, W., & Sitzenfrei, R. (2021). Integrated urban water management with micro storages developed as an IoT-based solution – The smart rain barrel. Environmental Modelling and Software, 139. https://doi.org/10.1016/j.envsoft.2021.105028
Pochodyła, E., Glińska-Lewczuk, K., & Jaszczak, A. (2021). Blue-green infrastructure as a new trend and an effective tool for water management in urban areas. Landscape Online, 92, 1–20. https://doi.org/10.3097/LO.202192
Priambodo, S., Suhardjono, Montarcih, L., & Suhartanto, E. (2019). Hourly rainfall distribution patterns in Java island. MATEC Web of Conferences, 276. https://doi.org/10.1051/matecconf/201927604012
Progênio, M. F., & Blanco, C. J. C. (2020). Cumulative distribution function of daily rainfall in the Tocantins–Araguaia hydrographic region, Amazon, Brazil. Natural Resource Modeling, 33(2). https://doi.org/10.1111/nrm.12264
Putri, F. K., Hidayah, E., & Ma’ruf, M. F. (2023a). Enhancing stormwater management with low impact development (LID): a review of the rain barrel, bioretention, and permeable pavement applicability in Indonesia. Water Science and Technology, 87(9). https://doi.org/10.2166/wst.2023.095
Putri, F. K., Hidayah, E., & Ma’ruf, M. F. (2023b). Enhancing stormwater management with low impact development (LID): a review of the rain barrel, bioretention, and permeable pavement applicability in Indonesia. Water Science and Technology, 87(9). https://doi.org/10.2166/wst.2023.095
Qin, Y. (2020). Urban flooding mitigation techniques: A systematic review and future studies. In Water (Switzerland) (Vol. 12, Issue 12). MDPI AG. https://doi.org/10.3390/w12123579
Rossman, L. A., & Simon, M. (2022). Storm Water Management Model User’s Manual Version 5.2. U.S. Environmental Protection Agency. www.epa.gov/water-research
Shi, W., & Wang, N. (2020). An improved SCS-CN method incorporating slope, soil moisture, and storm duration factors for runoff prediction. Water (Switzerland), 12(5). https://doi.org/10.3390/W12051335
Siregar, R. I., Nursyamsi, N., Indrawan, I., Sembiring, R. A., Karolina, R., & Dewi, R. A. (2020). An Approach of Travel Time of Flood Peaks and Runoff Model towards Low Impact Development. In Simetrikal Journal of Engineering and Technology (Vol. 02, Issue 01). https://talenta.usu.ac.id/index.php/jet
Stec, A. (2018). Hydrodynamic modeling of the impact of residential rainwater harvesting systems on stormwater runoff and drainage networks. E3S Web of Conferences, 45. https://doi.org/10.1051/e3sconf/20184500089
Zhang, C., Wang, J., Liu, J., Lv, Y., Chen, J., Yang, Z., & Zhang, N. (2023). Performance assessment for the integrated green-gray-blue infrastructure under extreme rainfall scenarios. Frontiers in Ecology and Evolution, 11. https://doi.org/10.3389/fevo.2023.1242492
DOI: http://dx.doi.org/10.29103/tj.v14i2.1142
Refbacks
Copyright (c) 2024 Copyright (c) - Yangga Purnagusti, Entin Hidayah, Audiananti Meganandi Kartini
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons "Attribution-ShareAlike”
Attibusion Internasional (CC BY-SA 4.0)
March and September
In cooperation with Ikatan Sarjana Teknik Sipil (ISATSI NAD) Lhokseumawe