Analisis Banjir pada Polder Sunter Timur II dengan Menggunakan HEC-RAS (Ras Mapper)

Agis Setiyowati, Evi Anggraheni

Abstract


Abstrak

 

Banjir di Jakarta menimbulkan kerusakan dan kerugian, menjadi latar belakang dilakukannya analisis banjir di Polder Sunter Timur II yang disajikan dalam makalah ini. Wilayah hilir Jakarta terbagi menjadi 43 sistem polder dan salah satunya adalah Polder Sunter Timur II. Studi ini bertujuan untuk mendapatkan luas daerah banjir rencana Polder Sunter Timur II. Analisis hidrologi menggunakan software HEC-HMS dan analisis banjir menggunakan HEC-RAS (Ras Mapper). Data input yang digunakan dalam pemodelan yaitu Digital Elevation Model (DEM), hidrograf, peta penggunaan lahan. Daerah tangkapan air polder Sunter Timur II sebesar 1,328 km2. Hasil simulasi HEC-HMS didapat debit banjir rencana kala ulang 5, 10 dan 25 tahun yaitu sebesar 185 m3/dt, 208,7 m3/dt, 234,3 m3/dt. Hasil simulasi HEC-RAS menunjukkan luas daerah banjir dengan debit banjir kala ulang 5, 10 dan 25 tahun adalah 857,08 Ha, 885,62 Ha, 979,59 Ha.

 

Kata kunci: banjir, sistem polder, analisis hidrologi, HEC-HMS, HEC-RAS

 

Abstract

 

Flood in Jakarta cause damage and losses are the reason for flood analysis of the East Sunter II Polder presented in this paper. Downstream area of Jakarta is divided into 43 polder systems and one of them is East Sunter II Polder. This study aims to obtain the flood area of Polder East Sunter II plan. Hydrological analysis using HEC-HMS software and flood analysis using HEC-RAS (Ras Mapper). Input data used in modeling are Digital Elevation Model (DEM), hydrograph, land use map. Catchment area of the East Sunter II polder is 1,328 km2. The result of HEC-HMS, for 5-, 10- and 25-year return period flood discharge is 185 m3/s, 208,7 m3/s, 234 m3/s. The results of HEC-RAS show that the flood area with 5, 10 and 25-year return period flood discharge is 857,08 Ha, 885,62 Ha, 979,59 Ha.

 

Keywords: flood, polder system, hydrology analysis, HEC-HMS, HEC-RAS


Keywords


banjir, sistem polder, analisis hidrologi, HEC-HMS, HEC-RAS

Full Text:

PDF

References


Al Amin, M.B. (2016) ‘Analisis Genangan Banjir di Kawasan Sekitar Kolam Retensi dan Rencana Pengendaliannya, Studi Kasus: Kolam Retensi Siti Khadijah Palembang’, Jurnal Perencanaan Wilayah dan Kota, 27(2), p. 69. Available at: https://doi.org/10.5614/jrcp.2016.27.2.1.

Amin, M.T., Izwan, M. and Alazba, A.A. (2016) ‘A best-fit probability distribution for the estimation of rainfall in northern regions of Pakistan’, Open Life Sciences, 11(1), pp. 432–440. Available at: https://doi.org/10.1515/biol-2016-0057.

Anta, V.L.P., Liestyo, I.A. and Warnars, H.L.H.S. (2021) ‘Mobile Application for flood disaster in Jakarta’, in Proceedings - International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021. Institute of Electrical and Electronics Engineers Inc., pp. 506–510. Available at: https://doi.org/10.1109/ICAIS50930.2021.9395799.

Awadallah, M.O.M., Juárez, A. and Alfredsen, K. (2022) ‘Comparison between Topographic and Bathymetric LiDAR Terrain Models in Flood Inundation Estimations’, Remote Sensing, 14(1). Available at: https://doi.org/10.3390/rs14010227.

Chow, V. Te, Maidment, D.R. and Mays, L.W. (1988) Applied hydrology (letters), Applied Hydrology.

Cyntia (2018) Analisis Penurunan Muka Tanah DKI Jakarta Dengan Metode Differential Iinterferometry Synthetic Aperture Radar (DINSAR), Jurnal Ilmu dan Inovasi Fisika).

Desalegn, H. and Mulu, A. (2021) ‘Mapping flood inundation areas using GIS and HEC-RAS model at Fetam River, Upper Abbay Basin, Ethiopia’, Scientific African, 12. Available at: https://doi.org/10.1016/j.sciaf.2021.e00834.

Elsebaie, I.H. (2012) ‘Developing rainfall intensity–duration–frequency relationship for two regions in Saudi Arabia’, Journal of King Saud University - Engineering Sciences, 24(2), pp. 131–140. Available at: https://doi.org/10.1016/j.jksues.2011.06.001.

Formánek, A. et al. (2013) ‘Two-dimensional model of ciliwung river flood in DKI Jakarta for development of the regional flood index map’, Journal of Engineering and Technological Sciences, 45 B(3), pp. 307–325. Available at: https://doi.org/10.5614/j.eng.technol.sci.2013.45.3.7.

Huang, C.W. et al. (2018) ‘Optimal design of interception for flood control: An integrated simulation approach’, Journal of Hydro-Environment Research, 19, pp. 103–116. Available at: https://doi.org/10.1016/j.jher.2018.02.001.

Johnson, F. and Green, J. (2018) ‘A comprehensive continent-wide regionalisation investigation for daily design rainfall’, Journal of Hydrology: Regional Studies, 16, pp. 67–79. Available at: https://doi.org/10.1016/j.ejrh.2018.03.001.

Kazezyılmaz-Alhan, C.M. et al. (2021) ‘A hydrological model for ayamama watershed in Istanbul, Turkey, using HEC-HMS’, Water Practice and Technology, 16(1). Available at: https://doi.org/10.2166/wpt.2020.108.

Koutsoyiannis, D. (2004) ‘Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation’, Hydrological Sciences Journal, 49(4), pp. 575–590. Available at: https://doi.org/10.1623/hysj.49.4.575.54430.

Nasjono, J.K. (2018) ‘Keandalan Metode Soil Curve Conservation Services-Curve Number untuk Perhitungan Debit Puncak pada DAS Manikin’, Jurnal Teknik Sipil, VII(2).

Nasution, B.I. et al. (2022) ‘Urban vulnerability to floods investigation in jakarta, Indonesia: A hybrid optimized fuzzy spatial clustering and news media analysis approach’, International Journal of Disaster Risk Reduction, 83. Available at: https://doi.org/10.1016/j.ijdrr.2022.103407.

Noviadriana, D. et al. (2020) ‘Indicators of Index for Polder Services use Partial Least Square and Personal Component Analysis Method’, in IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing. Available at: https://doi.org/10.1088/1755-1315/437/1/012028.

Psomiadis, E., Soulis, K.X. and Efthimiou, N. (2020) ‘Using SCS-CN and earth observation for the comparative assessment of the hydrological effect of gradual and abrupt spatiotemporal land cover changes’, Water (Switzerland), 12(5). Available at: https://doi.org/10.3390/W12051386.

Ranjan, S. and Singh, V. (2022) ‘HEC-HMS based rainfall-runoff model for Punpun river basin’, Water Practice and Technology, 17(5), pp. 986–1001. Available at: https://doi.org/10.2166/wpt.2022.033.

Remondi, F., Burlando, P. and Vollmer, D. (2016) ‘Exploring the hydrological impact of increasing urbanisation on a tropical river catchment of the metropolitan Jakarta, Indonesia’, Sustainable Cities and Society, 20, pp. 210–221. Available at: https://doi.org/10.1016/j.scs.2015.10.001.

Ruhiat, D. (2022) ‘Implementasi Distribusi Peluang Gumbel Untuk Analisis Data Curah Hujan Rencana’, Teorema: Teori dan Riset Matematika, 7(1), p. 213. Available at: https://doi.org/10.25157/teorema.v7i1.7137.

Sari, V., Sutjiningsih, D. and Anggraheni, E. (2019) ‘Effectiveness of Muara Angke Polder System in North Jakarta’, International Journal of Innovative Technology and Exploring Engineering (IJITEE) [Preprint].

Stoleriu, C.C., Urzica, A. and Mihu-Pintilie, A. (2020) ‘Improving flood risk map accuracy using high-density LiDAR data and the HEC-RAS river analysis system: A case study from north-eastern Romania’, Journal of Flood Risk Management, 13(S1). Available at: https://doi.org/10.1111/jfr3.12572.

Tamiru, H. and Dinka, M.O. (2021) ‘Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia’, Journal of Hydrology: Regional Studies, 36. Available at: https://doi.org/10.1016/j.ejrh.2021.100855.

Urzică, A. et al. (2021) ‘Using 2D HEC-RAS modeling and embankment dam break scenario for assessing the flood control capacity of a multireservoir system (Ne Romania)’, Water (Switzerland), 13(1). Available at: https://doi.org/10.3390/w13010057.

US Army Corps of Engineers (2016) ‘HEC-RAS, River Analysis System, HEC-RAS Mapper User’s Manual’.

US Army Corps of Engineers (2022) HEC-HMS https://www.hec.usace.army.mil/software/hec-hms/.

Vashist, K. and Singh, K.K. (2023) ‘HEC-RAS 2D modeling for flood inundation mapping: a case study of the Krishna River Basin’, Water Practice and Technology, 18(4). Available at: https://doi.org/10.2166/wpt.2023.048.

Yatsrib, M. et al. (2021) ‘Assessment of flood risk reduction in DKI Jakarta: Cengkareng Sub-district’, in IOP Conference Series: Earth and Environmental Science. Institute of Physics. Available at: https://doi.org/10.1088/1755-1315/737/1/012026.




DOI: http://dx.doi.org/10.29103/tj.v14i1.1003

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Agis Setiyowati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN: 2088-0651 

E-ISSN: 2502-1680

 Google Scholar

 
Accredited based on Sinta 3 based on the Decree of the Director General of Strengthening Research and Development of the Ministry of Research, Technology and Higher Education of the Republic of Indonesia Number 230/E/KPT/2022
Valid for 5 years, Volume 12 Number 2 Year 2022 to Volume 17 Number 1 Year 2027

 

Creative Commons "Attribution-ShareAlike”

Attibusion Internasional (CC BY-SA 4.0)




Published 2 times a year
March and September

Published by:
The Research institutions and community service (LPPM) Universitas Malikussaleh

In cooperation with Ikatan Sarjana Teknik Sipil (ISATSI NAD) Lhokseumawe


Web Analytics

View My Stats