PENGARUH DENSITAS ARUS TERHADAP PERILAKU RETAK BETON BERTULANG YANG MENGALAMI KOROSI TULANGAN

Zahra Amalia, Taufiq Saidi, Taufiq Saidi, Teuku Budi Aulia, Teuku Budi Aulia, Mahlil Mahlil, Mahlil Mahlil

Abstract


Abstrak

 

Korosi pada struktur beton betulang dapat mengurangi kinerja struktur dan umur layannya karena volume tulangan yang berkurang. Besarnya jumlah korosi yang dipengaruhi oleh laju korosi dapat digambarkan melalui besarnya densitas arus yang terjadi. Jumlah korosi yang terjadi mempengaruhi perilaku retak pada beton bertulang, oleh karen itu, pada studi ini dilakukan uji eksperimental untuk mengevaluasi pengaruh densitas arus terhadap perilaku retak permukaan beton dari struktur beton bertulang yang mengalami korosi tulangan. Pengujian dilakukan dengan mengaplikasikan variasi densitas arus yaitu 900 µA/cm2, 500 µA/cm2, 200 µA/cm2 and 100 µA/cm2 pada pengujian korosi secara elektrik menggunakan larutan NaCl sebagai elektrolit untuk menghasilkan ion Cl-. Benda uji yang digunakan adalah balok dengan luas penampang 150x150 mm2 dan panjang benda uji 300 mm. Tulangan baja diameter 19 mm digunakan pada tengah penampang. Hasil pengujian menunjukkan bahwa perilaku retak dari beton bertulang yang mengalami korosi pada tulangannya memiliki kurva yang bilinear. Selain itu, hasil pengujian menunjukkan bahwa densitas arus yang rendah memiliki kecepatan retak permukaan beton yang lebih tinggi jika dibandingkan dengan benda uji dengan menggunakan densitas arus yang tinggi.

 

Kata kunci: korosi, beton bertulang, produk korosi, retak, densitas arus

 

Abstract

 

Corrosion in reinforced concrete structure can reduce structure performance and its service life due to rebar mass loss. Corrosion amount influenced by corrosion rate can be figured out by using current density. Corrosion amount influences the crack behavior of reinforced concrete, therefore, in this study, experimental study was performed to evaluate the effect of current density to surface concrete cracking behavior of corroded reinforced concrete structure. Accelerated corrosion test tests were conducted with various current density. It was 900 µA/cm2, 500 µA/cm2, 200 µA/cm2 and 100 µA/cm2. NaCl solution was used as electrolyte to produce ion Cl-. The specimens were beam with cross section area 150x150 mm2 and 300 mm in length. Rebar with diameter 19 mm was applied in the center of specimen. The results showed that cracking behavior of corroded rebar has bilinear curve that shows the effect of corrosion products movement through cracks. Furthermore, lower corrosion rate has higher cracking speed than higher corrosion rate.

 

Keywords: corrosion, reinforced concrete, corrosion products, cracking, current density


Keywords


corrosion, reinforced concrete, corrosion products, cracking, current density

Full Text:

PDF

References


Alonso, C., Andrade, C., Rodriguez, J., Diez, J.M., 1998. Factors controlling cracking of concrete affected by reinforcement corrosion. Mater. Struct. 31, 435–441. https://doi.org/10.1007/BF02480466

Amalia, Z., Qiao, D., Nakamura, H., Miura, T., Yamamoto, Y., 2018. Development of simulation method of concrete cracking behavior and corrosion products movement due to rebar corrosion. Constr. Build. Mater. 190, 560–572. https://doi.org/10.1016/j.conbuildmat.2018.09.100

Andrade, C., Alonso, C., Molina, F.J., 1993. Cover cracking as a function of bar corrosion: Part I-Experimental test. Mater. Struct. 26, 453–464. https://doi.org/10.1007/BF02472805

Caré, S., Raharinaivo, A., 2007. Influence of impressed current on the initiation of damage in reinforced mortar due to corrosion of embedded steel. Cem. Concr. Res. 37, 1598–1612. https://doi.org/10.1016/j.cemconres.2007.08.022

El Maaddawy, T.A., Soudki, K.A., 2003. Effectiveness of Impressed Current Technique to Simulate Corrosion of Steel Reinforcement in Concrete. J. Mater. Civ. Eng. 15, 41–47. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(41)

Gebreyouhannes, E., Maekawa, K., 2016. Nonlinear Gel Migration in Cracked Concrete and Broken Symmetry of Corrosion Profiles. J. Adv. Concr. Technol. 14, 271–286. https://doi.org/10.3151/jact.14.271

JSCE, 2002. Standard Specification for Concrete Structure Construction. Maruzen, Tokyo.

Liu, Y, Weyers, R. W, 1998. Modeling the Time-to-Corrosion Cracking in Chloride Contaminated Reinforced Concrete Structures. ACI Mater. J. 95. https://doi.org/10.14359/410

Malumbela, G, Moyo, P, Alexander, M, 2012. A Step Towards Standardising Accelerated Corrosion Tests on Laboratory Reinforced Concrete Specimens. J. South Afr. Inst. Civ. Eng. 54, 78–85.

Mullard Jhon A, Mark G. Stewart, 2011. Corrosion-Induced Cover Cracking: New Test Data and Predictive Models. ACI Struct. J. 108. https://doi.org/10.14359/51664204

National Association of Corrosion Engineers (NACE), 2016. International Measures of Prevention, Application, and Economics of Corrosion Technologies Study, in: NACE International IMPACT.

Pedrosa, F., Andrade, C., 2017. Corrosion induced cracking: Effect of different corrosion rates on crack width evolution. Constr. Build. Mater. 133, 525–533. https://doi.org/10.1016/j.conbuildmat.2016.12.030

Takaya, S, Nakamura, S, Yamamoto, T, Miyagawa, T, 2013. Influence of Steel Corrosion Products in Concrete on Crack Opening Weight Loss of Corrosion. J. JSCE 69, 154–165.

Tran, K.K., Nakamura, H., Kawamura, K., Kunieda, M., 2011. Analysis of crack propagation due to rebar corrosion using RBSM. Cem. Concr. Compos. 33, 906–917. https://doi.org/10.1016/j.cemconcomp.2011.06.001

Wong, H.S., Zhao, Y.X., Karimi, A.R., Buenfeld, N.R., Jin, W.L., 2010. On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion. Corros. Sci. 52, 2469–2480. https://doi.org/10.1016/j.corsci.2010.03.025




DOI: http://dx.doi.org/10.29103/tj.v11i2.507

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Zahra Amalia, Taufiq Saidi, Teuku Budi Aulia, Mahlil

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN: 2088-0651 

E-ISSN: 2502-1680

 Google Scholar

 
Accredited based on Sinta 3 based on the Decree of the Director General of Strengthening Research and Development of the Ministry of Research, Technology and Higher Education of the Republic of Indonesia Number 230/E/KPT/2022
Valid for 5 years, Volume 12 Number 2 Year 2022 to Volume 17 Number 1 Year 2027

 

Creative Commons "Attribution-ShareAlike”

Attibusion Internasional (CC BY-SA 4.0)




Published 2 times a year
March and September

Published by:
The Research institutions and community service (LPPM) Universitas Malikussaleh

In cooperation with Ikatan Sarjana Teknik Sipil (ISATSI NAD) Lhokseumawe


Web Analytics

View My Stats